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Theory of Space Charge Between
Parallel Plane Electrodes

1. INTRODUCTION

The theory of space charge between parallel plane electrodes has been treated
by numerous authors beginning with Child's work in 19111 and culminating in a
fairly detailed paper in 1938 by Fay, Samuel, and Shockley. 2 The present report
differs from these earlier publications in a major respect; namely that the earlier
papers treat an initial value problem, while the current work treats a boundary
value problem. IFrom a practical standpoint, if similar ranges of parameters are
covered, this difference is of small consequence, since for equivalent families of
solutions the information contained is equivalent. From the mathematical point of
view, however, the treatment as a boundary value problem differs substantially
from the initial value treatment

The planar space charge problem is one of the simplest naturally occurring
problems in electrostatics. Since most problems in electrostatics are formulated
by necessity as boundary value problems, it is of interest to solve the planar space
charge problem in this manner. The various types of solutions are also more easily
organized and classified with this treatment. Finally, such a solution serves as a
rare prototype which can be solved analytically to solutions of more difficult problems.

(Received for publication 6 Decemb. -~ 1982)
1. Child, C.D. (1911) Phys. Rev, 333492.

2, Fay, C.E., Samuel, A,L., and Shockley, W. (1938) Bell Systems Technical
Journal, 17:49,
WAAA




2. FORMAL CLASSIFICATION OF THE SOLUTIONS OF THE
SPACE CHARGE EQUATION

The space charge equation for a plane, written in MKS units is

2

d%v _ _ -1/2
eog-z-ne—J(Ze/M(vo+v)) (1)
X

where

v = electric potential,

n = charged particle number density,

e = electronic charge,

J = current density,

M = particle mass,

X = spatial coordinate,

€y = permittivity of free space,

vy = initial energy per unit charge of emitted particle.
Let

2’M
JL e

y=x/L, A=9/4 —77 (D=V/V0
€ v
o o

where L = distance between electrodes.

Then
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Integrating twice, we have

g‘£=¢(2c+16/9AV'i_+w)”2 (3)
Y
and

419A NI+ 0-C 50, 1670 o) /2 yec’ (4)

16/27 A®
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where C and C’ are constants of integration. Let © = 0 wheny = 0. Then

49ANV1+0-C 3¢y 16/0AVT+0) /2= s y+ HEAZC 54 1678 001/2,
16/27 A 16/27 A s
(5) '
The common space charge limited solution sets g—;@ = 0 wheny = 0, Here, we treat i
the general case by letting ¢ = o, when y = 1. There are then three distinct classes ¥
of solutions which must be distinguished:

(I) A potential minimum for 0 < y = does not exist.
(II) A potential minimum at 0 = y,, = 1 does exist, the corresponding
value of potential M is greater than -1.
(I} A potential minimum at 0 = y,, < 1 exists; the corresponding
potential (DM = -1; and the current divides at y = M-
We examine each of these in turn.
For class I, a single solution, with either the + (wo > 0)or - ((00 < 0) sign is

B TR i AT -

continued from y = 0 to y = 1. The imposition of ¢ = ©, when y = 1 then leads to
the following equation for the determination of C

4/9 A l+e@, -

C
(2C + 16/9A\/1+wo)1/2=i 1+3E—A;2C— 2c+ 16/9 M)/2,

16/27 A° 16/27 A

(6)
If this equation is cleared of fractional powers it results in a cubic in C,
2cd-0-852c%-ss/2mazasa-BH B -1-A)C
s@2n?alaa-@-1-0%=0 (7)

where

Eq. (7) contains implicitly roots corresponding to the * sign appearing in
Eq. (6); it inay also contain extraneous roots introduced by the clearing of fractional
exponents. Thus any (branch of) solutions for C of Eq. (7) must be tested in
Eq. (6) to insure tha! they actually represent solutions of the original boundary value

et i AN A S S0t g A s iy 5 o

problem. There are thus both advantages and disadvantages in working with Eq. (7)
rather than directly with the original Eq. (6). The advantage is that Eq. (7) is of

a well known explicitly solvable form, so that the roots can be systematically found
and classified; the disadvantage, noted above, that once a root is found it must be
checked further to see if it also satisfies Eq. (6).

bt ban i o




‘The general explicit solutions of Eq. (7) are too lengthy to be of value and we
do not write them down here; we discuss rather their general properties.
The class I solutions may be further divided as follows:

>
(Ia) 0, = 0.

The + sign in Egs. (3) through (6) is chosen and

gﬁ) =16/9A+2C20.
y y=0

For any given ®, there is a maximum value of A, corresponding to C = -8/9A, and

obtained by putting this value of C into Eq. (6)
At =B+2% B-1
M : (8)

<
(Ib) o, = 0.
The - sign in Egs. (3) through (6) is chosen and

gﬂ) = 16/9AB+2C<0.
Y)y=1

For any given ®, there is again a maximum value of A, here corresponding to
C = - 8/9 A B and obtained by putting this value of C into Eq. (8)

- _ 2
AM—(1+ 2B)” (1 - B). (9)

The maximum value OfAl-VI is obtained for o, = -3/4 (B=1/2) and is given by

Class II, -1 = woi ©

For this class, the curve of © vs y is split into two branches and Eq. (6) cannot
be used directly to fix C. The separate boundary conditions for the two branches

are:

St 2.




Left hand branch Right hand branch

(~ sign applies) (+ sign applies)

- - =y - do
y=20 0= 0 YEYm w_wmay)m-o
2 = do = o= =

Y E VM © ~w1\1.a)—,>m— 0 y= 1 o= @

For the left hand branch we use Egs. (3) and (5) with the - sign to obtain

20+ 16/9 AV1+wN=0with -IEOMi 0 (10a)
T V1 I NC Y CH, 12 .. -

For the right hand branch we use kq. (4) with the + sign and obtain

4/9AB - C (h¢, 16/9AB)1/2=1—yM (11a)
16/27 A
4/9 AB - C 1/2 4/9A-C 1/2
(2c+16/9 AR /22 1 - (zc +16/9 a)l/2, (11b)
16/27 A 16/27 A°
The potentials are given by
A9ANIYC-C 3¢+ 16/9A T+ 2k vy -y (12)

16/27 A

where the + sign goes with the left hand branch and the - sign with the right hand
branch,

The only difference between Eq. (11b) and Eq. (6) is in the signs on the right
hand side. When, however, Eq. (11b) is cleared of fractional powers to form a
cubic in C, these differences are eliminated, and once again we obtain Eq. (7).
Again, clearing Eq. (11b) of fractional powers may introduce spurious roots, so
that solutions of Eq. (7) must be examined carefully to see if they satisfy both
Egs. (10a) and (11b), and are thus proper solutions of the original boundary value
problem.

The lower limits of A for class II solutions are the upper limits for class I,
namely A* - If all solutions were unique, the upper limits would be found from Eqs.
(10a) and (lOb), the former w1th¢p = -1 leading to C=0, the latter yielding
M= 1/ V— Putting these values in Eq. (11a)

11




AE=[33/2+ 1]2= [(1+w°)3/4+ 1] 2. (13)
In fact, however, not all pairs of values (A, B) do lead to unique solutions, and
AI': does not always give the upper limit for class II solutions. It does, however,
play a significant role in the classification of solutions.

For some values of o_ we find AI': 2 A;VI' Al-Vl while for others this is not the
case. The transition occurs for

2 _3/2 2
(BU +2)7(By - D= (By "+ 1) fore >0 (14)
and for
2 302 2
(2 BL+ n«Qa- BL)— (BL + 1) forqoo <0. (15)

Eqgs. (14) and (15) when cleared of fractional powers are quartics with one root,
which clearly does not satisfy Eqs. (14) and (15) at B,. = B, = 1. I these quartics

U L
are divided by BU' - 1 and B, - 1 respectively, the resulting cubics are

L

9Bl +582-25B, -25=-0 (16)
U U U

5B 42582 .58 -9=0 (17)
L L L~9%°

from which we see directly that BL = I/BU.
Solving Eq. (16) we have for the one real, positive root, B
hence BL = 0.55062.

The corresponding values of o, are

= 1.81612 and

U

“’o) = 2.2983 and © ) = -0.69682 .
U °/L

i'he maximum value of

+
A B+ 22(B-1
377 7T
A'L B¢+ 1)

is 4/3 and occurs for B= 4 or wo = 15, 1he maximum value of

e o




A 2
M (1+ 2BY (1 - B
—_ = Ty
At RN
is also 4/3 and occurs for B= 174 or e 15/146.

The significance of the separation of values of ©, into those for which

Z “’o) will be claritied in what follows.
I.

& {O) and ©
Q (83 U O

3.  DISCUSSION OF SOLUTIONS FOR THE INTEGRATION
CONSTANT FOR CLASSES 1 AND 11

We commence our examination of the functions C(A, B), implicitly defined by
i Eq. (7), by an application of Descartes' rule. We note that the coefficients of the
first and second terms are always positive and negative respectively., The coeffi-

cient of the third term is positive for small A and changes sign when

_wopwo

e

A
k BZ 41
: while the coefficient of the last term is negative for small A and changes sign when
: 32 .2
: ;\:;:(H/il).
Now,
3/2 2 2wt on
(B'”"+ l)">(H -1) ¢ -1
BY+ 1
for all
0 <} <o
while
{ . o 3
: (”.5/2_”2 L B" - l')(B - 1)

Bz+ 1

; the equality holding only for B=1. We thus have the following sequence of varia-
tions in signs of coefficients as A goes from 0 to =,




A Signs of Coefficients
l 0 <A< AL + - + .
AL <A< Ap + - + +
A <A< AL + - - +
A‘I’-_, <A< w + - - -

The change in sign from the second to the third row does not change the number of
variations in sign and hence we have for the number of £ roots, N=t according to

DesCartes' rule,

N, N_
0 <A<AL 3or1
AI:<A<A'£ 20r0 1
A£<A<oo 1 20r0

The ambiguities in N+ and N_ are resolved by examination of the discriminant of
Eq. (7).

If we use the common notation for the coefficients of cubics

C3+pC2+qC+r=0 (18)

2
a=q-p /3
3

b=2/27p" -1/3pq+r

then the discriminant is defined by

R = b2/4 + 33/27 .

The discriminant of Eq. (7) is of eighth order in A, and is factorable into the

following form:

2 . , . . A
U8 A A - e A - a-BPBae it A - a-mtmres 2
(27) (19)

R

Thus, for A <(1+ E:)3 there are three real roots and for A > (1+ B)" only one. l.et

AR = (1+ B)3; then the numbers of roots are

14
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N, N_

<A <AL 3 ]
AL<A<A'L 2 1
AL <A <A, 1 2
A, <A <% 1 0

With this table and the preceding material in hand we are in a pasition to
organize, and in what follows, to assign types of solutions in the parameter space.
Plotting the four curves A;W AI-W A'{‘, and AR in the A, B (or A, (DO) plane, we find
the quadrant A, B 2 0 divided into seven regions. Each region will be characterized
by the type(s) and numbers of solutions allowed in that region (Figure 1). Although
there is a change in sign of one coefficient at A = AL. there is no corresponding
change in the class type of solution and hence AL does not appear in the figure. A
further subdivision of, and final assignment of classes in the regions of the A, B

plane is accomplished in Section 4.

140 T T T T T T T T
120 + -
100 Ag

80

6o}

)4
T4

20 [
Ay 3

E e e e ———

S 'y Y A, A L 'S

0.0 02 04 /o.s o8 10 12 14 1.6
8,

20

}

@
o
c

Figure 1. Division of (A, B) Plane Into Separate Regions Characterized by 3
Numbers and Classes of Solutions in Each Region 4

15

"




B e R R R R e

We now proceed to examine the solutions of Eq. (7) so that classes of solutions
may be assigned to the different regions.

We intend to examine the values of C as functions of A for fixed too. In this,
we define Cl' C2, C3 so that outside of values for C at the singular points

A = 1-B? (B+1/2), Ay= (1- BY? (B/2+ 1) we will have C, * C, 2 C,. The
labelling of the roots in this order also identifies them permanently by branch. U
we put C=C' -p/3 then Eq. (18) becomes

€¥+ac’+b=0. (20)
It

.. (-b/2+ﬁ>”3

o - (-b/2- v_R_)I/S

our solutions are labelled so that

c; = a+f (21a)

cé:-"‘—;-é - “—éﬁ- -3 (21b)
cé:-“_}‘i»f Y (21c)

3.1 Asymptotic Limits for Small A

For small A the roots of Eq. (7) are given by relatively simple expressions.
If the equation is modified so that terms in A only as high as the second power are
retained, we have

2¢3 - (B2-1%c2-16/271 Ala1+BY - B2- (B -1+ w2t a? B2 0.

(22)

If we assume a solution O[C] >> O[A] where Of ] = "order of'' we may drop the term
in A2, and the resulting quadratic has as one solution

_1,..2 2 B -1
Cl-i(B 1) 16/2732—‘—11\. (23)

16
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The other root of the quadratic leads to O[C]) = O[A] and is hence contrary to our
agsumption. If Eq. (6) is expanded out to terms of order A™ we find
m =% (82 - 1). Thus the single solution of Eq. (22), Cl = 1/2(B2 ~ l)2 contains
the two solutions of Eq. (6) corresponding to the + sign.

This does not however exhaust the solutions of Eq. (22). If we now assume
that there is a solution of the form OfC] = O[{A] the term in C3 is of higher order
in powers of A than the other three terms and solution of the quadratic resulting

from neglecting the term in C‘j yields, for B# 1

B%-1 B%:+ B+ 1
C2=C3=8/27;2~-—1—A=8/27—W——A. (24)

This is a double root of Eq. (21) and hence the existing three roots have been found.
For B=1, the approximations A f(B) << (B2 - 1), (B3 - 1) with f(B)# 0 are no
longer valid and we must return to Eq. (7). Setting B=1 and then retaining only

the lowest power of A in the coefficients we have
c3-16/21a%c+26/2n%a%-0.
The solutions are

C1 = C2 =4/9 A (double root) (25a)

C3 =-8/9A. (25b)

If Eq. (24) is put into Eq. (6} and the roots expanded to obtain the lowest non-
vanishing order in A, we find that C2 is not a solution of Eq. (6). Althoughit is a
solution of Eq. (11a) it is also not a solution of Eq. (10a).

Thus, of the three solutions of Eq., (22), only Cl is a solution of the original
problem; and, this contains the two solutions corresponding to the £ sign.

3.2 Other Special Values of C
For A= AR-—- (B+ 1)3 (and R=0), Eq. (7), when solved by use of standard cubic

formulae yields expressions which may be simplified to obtain

2

C = 1/8 B+ N2 (38%+14/3 B+ 3) (26a)

Cy=Cy= - 8/9 Bl1+ B, (26b)

3
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Similarly, for A=A, =(1- B)? (B/2+1)

C.=1/18(B- D?(B%+2B+9) (27a)

0
"

= Cy=2/9(B- DZB(B+2) (27b)

and for A=A = (1- B (B+1/2)

9]
"

1/18(B- D2 (9B24+ 2B+ 1) (28a)
Cy= Cy=2/9(B- D% (2B+1). (28b)

ForA:A}'vl = (B+ 2)2 (B - 1) we know one root from the definition of A';VI; namely

%) =2C+16/9A)
y y=0

and
C=C,=-8/9(B+2%(B-1). (29a)
From this we obtain an equation quadratic in C, and the remaining two roots

C L p=1/4 {(32-1)2+ 16/9 (B+ 2%(B- 1) + (B2-1)

1/2
[(BZ- 12+ 32/3 (B+ 2)2 (B-l)] } (29b)

where the + signs are associated with the subscripts 1, 2 of C respectively.

Similarly for A=Al-vl = (2B+ l)2 (1 - B) one root is

C3=-8/9AB=-8/9 B(2B+l)2(1-B) (30a)

and the other two roots are found to be

18




: 2
C, 5="1/4 %<52-1)2+ 16/9 AB + [[(132-1)2+ 16/9AB]

3 2 1/2
- 64/81 AB(B-1) (-25 B> - 25 B%4 5 B+ 9) (30b)

Rl i T

e he Lol e bnd

where again the + signs go respectively with the subscripts 1, 2.

3.3  The Zeros of C

The zeros of C are obtained when

an-B-1-a%-0

A=A£=(B3/2:t n?, (31)

For any B there are thus two values of A for which C=0. It must be deter-
mined however which branches, Cl‘ C2 or C3 these zeros belong to. This, as
well as the further properties of C require more complete solutions for C as

functions of A. We now turn to these solutions,

3.4  Systematic Presentation of Solutions for C

We continue our examination of solutions of Eq. (7) by graphing solutions of
C vs A for seven values of (oo: -0.9; -0.5; 0.0; 1,0; 3.0; 30; and 1000, These are
shown in Figures 2 through 8. The first five values are chosen to fall in the
separate regions illustrated in Figure 1; the last two to show behavior at large Q.
In addition, Figures 9, 10 and 11 show the behavior of the roots for small A, for
®, =-0.5; 1.0; and 3.0. .

We note first that the zero at A = (B
that at A = (B3/2
singularities at A= A1 and A= A2 the intent to label the branches so that

Iz 1)2 occurs in the C3

+ 1)2 occurs in the C2 branch, Further, again aside from

branch, while

Cl > C2 > C3 is accomplished. We next turn to a discussion of these singularities.

19




Figure 2. Graph of Integration Constant C vs
Non-dimensionalized Current Density A, for
Non-dimensionalized voltage @, = -0.9
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Figure 3. Gr.pa of Integration Constant C vs Non-dimensionalized Current
Density A for Non-dimensionalized Voltage @, = -0.5
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Figure 4. Grapu of Integration Constant C vs Non-dimensionalized Current
Density A, for Non-dimensionalized Voltage @, = 0.0
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Figure 5. Graph of Integration Constant C vs Non-dimensionalized Current
Density A, for Non-dimensionalized Voltage @, = 1.0

21



Figure 6. Grapn of Integration Constant C vs Non-dimensionalized Current
Density A, for Non-dimensionalized Voltage 0, = 3.0
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Figure 7. Graph of Integration Constant C vs Non-dimensionalized Current
Density A, for Non-dimensionalized Voltage ®, = 30.0
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Density A, for Non-dimensionalized Voltage @, = -0.5. Details for smalil A
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Figure 10. Grapn of Integration Constant C vs Non-dimensionalized Current
Density A, for Non-dimensionalized Voltage @, = 1. 0. Details for small A
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Figure 11. Graph of Integration Constant C vs Non-dimensionalized Current
Density A, for Non-dimensionalized Voltage 0, = 3.0. Details for small A
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3.5 Singularities in C

The singularities of C occur at the branch points given by R(A)=0. We con-~
fine ourselves to some general comments pointing out several of the more obvious
features of these singularities.

We note to start with that as far as first derivatives are concerned a visual
inspection of IYigures 2 through 11 indicates that for B <1 and A1 < A2, C1 and C2

have discontinuities at A:Al. while C2 and C3 have discontinuities at A=A For

2
B>1, and A1 > A2. the roles of A1 and A2 are interchanged.
For the behavior of the functions themselves Eqs. (27) and (28) yield the

following:

B A=A1 A=A2

B<1 C1<C2=C‘3 C1>C2—C3
B>1 L1>C2=C3 C1<C2=C3
B= C]=C2=C\3 C1=C2=C3

At A=the smaller of A, and A2 the evidence of a discontinuity is clear. The fig-

ures show at this point that Cl =C, > (‘,3; Egs. (21) on the other hand have when

2
R=0, in general, Cy= (:3 # Cl' There thus exists, for each fixed value of B a

singularity of C at A = the smaller of Al, Az. This singularity has the effect of

exchanging the neighboring values of C1 and C Numerical solutions are con-

3°
sistent with this supposition. Thus we have for example for B= 2 the following:

A C C C

1 2 3
1. 99997 1.77782 1,77775 0. 944434
1, 99998 1.77780 1.77776 0. 944437
1, 99999 1. 77779 177777 0. 944441
2. 00000 0. 94444 1.77778 1.777778
2.00001 1.77779 1.77776 0. 944448
2, 00002 1.77780 1.77775 0. 944452
2, 00003 1.77781 1,77774 0. 944455

At A= the larger of Al' A there is no obvious requirement that a singularity
exist, since graphical values in the figures and the results of kkqs. (21) both lead

to ('l > CZ:('X'




3.6 Assignment of QQasses to Solutions

Having obtained the solutions of Eq. (7) it now remains to determine which of
these satisfy Eq. (6) (class I) and which satisfy Eqs. (10a) and (11b) (class II).
This is accomplished by computer by substituting values of C into the appropriate
equations. If this is done, changes in numbers and classes are found to occur only

+
for A= Al\l' A]\ R

assignment of solutions in class lIl are discussed in the following section.

’ AI , and A This information is presented in Table 1. lhe

Table 1. Numbers and Classes of Solutions in the Various Regions
of Purameter Space

Region Solutions Class 1 Class Il Class 111
1 1 1 0 0
2 1 1 0 0
3 1 0 1 4]
4 3 0 2 1
) 3 1 1 1
6 3 1 1 1
7 1 0 0 1
8 3 1 0 2
9 3 0 1 2

3.7 Uniqueness

For A < AL (classes I and II) and A > AR (class III} the solutions for C are

unique functions of o, and A, For Ai <A< AR on the other hand the solutions are

many valued. Which solution among the multiple solutions is actually realized, may

be determined by; (1) the manner in which the operating conditions are approached,
and (2) questions of stability of operation. We do not investigate either of these

questions here.

3.8 Determination of Values of C

Value(s) of C for any o, A may be found by use of Table 2. Jlhe table is con-
structed by examination of solutions corresponding to the regions shown in Fig-
ure 1 and by observing that
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AMZAI'A2 0-¢D°<°°

Table 2. Assignment of C to Branches Corresponding
to Ranges of A and @,

- < + 5
lfwoawL and ch.Swo<°o (AL- Al' A2)
Range of A Branch of C Class
A 5A1 Cl 1
AIEAﬁA2 C2 1
< +

Ag A= AL C3 I
AT sa=al c,/C /1
L~ -TM 2'73

* L
AM~A SAR CZ‘C3 I

< < - > < +
(DL—% < O(AM— Al, Az) and 0—(00 5¢U(AM> Al' Az)

Range of A Branch of C Class
<
As Al C, I
A =AsA, Cy 1
<« p
g A2 <A< AM C3 1
+ +
Ay SAcs AL C, II
+ ey <
AL"A”AR Cyr Cq II
A =AY foro >0
M M o
i -
AM AM forwo <0

4. THE SPACF. CHARGE LIMITED (CLASS 1i1) CASE

We introduce the following additional terms (Figure 12):

i = Fractionof emitted current which is transmitted past the potential minimum,

¥y = Value of y at the potential minimum,

—_—— e
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Figure 12. Typical Class Il Potential Distribution Showing Fractional Current

Flow to Left and Right of Potential Minimum at 0= -1.0. B = v‘i— A= 13.98;
Yy F 0.2279: ;= 0.6235

Eq. (2} is then replaced by

2

d“o _ 4/9 A (2= 0 vy, (32)
dy© 1+

2

d’o _ 4/9 A o 2
.d-y_z = —l-:a— i AN 1. (33)

Solutions of Eqgs. (32) and (33) which satisfy the boundary conditions

- . do _
0= -1 a§’°

"' are
3 0= -1+ (a@- N*/3 ¢y -pt/3 (34)
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©0=-1+ (Aj)2/3 (y-yl)‘”3 (35)

respectively. The boundary conditions at y=0 and y=1 then yield
a2

1=A(2-J)y1 (36)

B = Aj1-y)2. (37)
Eliminating j,

2a=1/y2e B (38)

=Nt
(1 -yl)

and clearing of fractions,

F=2ay)-4Ay5+(2a-1-B% %, 2y,-1=0 (39)

an equation of fourth order in ¥y The role of Y1 here replaces that played by the
integration constant in the other two cases; once it is known {a function of A and B)
the potential distribution is fixed.

Since F(0)= -1 and F(~=)=w, Eq. (39) has at least one real root between 0 and
-, Since F(l)= -83 and F(o)=e, there is at {east one real root between +1 and
+%°, From Eq. (38) it is clear that the other two roots, when real, lie between
yl=0 and yi= 1.

Consider Eq. (38) for a fixed value of B. For Y= 1or ¥ = 0, A=%«, For
some 0 < ¥y <1, A hasa (unique) minimum. A must always be larger than this
minimum, and finding this minimum supplies a necessary condition in defining the
domain of A, B space over which there will be allowable solutions for Yy We have,

pda -2 288
dy, - 73 3"

1 Y1 (l-yl)
(l-yl)3= Bsy? (40)
1
—= B+ 1
Y1 *

2 3 B+ 1 2 3 1

> - - - —_

2A 2 2AMIN-(B+1) + B ( T) = (1+ B) —;3»~AR. 41)
1
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Although A > AMIN guarantees a solution of Eq. (39) for 0 = Yy = 1, there are
further requirements on the values of A necessary to insure that solutions of
physical interest exist. The value of j can never be greater than j= 1. Putting
j=1in Eqgs, (36) and (37) we obtain

3

_lzz ._§_2, (42)
¥y (l-yl)

For B 2 1 this limits y to values

1

¥y % -1-;;372 and A to values

2

/2) = A

- 3 +
Az (1+B L*

_ _ At + > At
For B=1, Ay =4 :iforall B >, A; > Ayyy and hence we must have A 2 A[
in order that solutions of physical interest exist.
For B= 1, Eq. (42) yields

or
k ES
AzZ1x B = AT . (43)

. - + . ces s afi
Since AL < AMIN = AL the dual inequalities Eqs. (41) and (43) can be satisfied by

A > AMIN' Now, when A=AMIN’ a double root of ¥, is
S
Y17 B¥1
and
. B
i=2gyr sl

Of the two solutions for ¥q for A > AMIN' one increases with increasing A, the
other decreases with increasing A, This hold for AMIN SAs A‘L with both solu-
tions for 0 < ¥y = 1 satisfying j = 1. At A=A1, one value of j equals unity, and for
A > AL. the solution with the larger value of y, has j > 1, so that only one solution
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of physical significance exists for A > AL. These considerations are clarified
by graphical display in Figures 13a and 13b.

40 T T T T

ONE SOLUTION

NO SOLUTIONS

Figure 13a. Geometric Illustration of Limits and
Numbers of Class III Solutions for B2 1
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NO SOLUTION

| 4
lG(l-yl)!/’
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-- T 1 1 1
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yl

Figure 13b. Geometric Illustration of Limits and
Numbers of Class III Solutions for B £ 1

We note that AMIN intersects AM at B= 1/VS_ > B, and intersects AL at B= 1.
Figure 14, a superposition ot'AMIN onto Figure 1 completes the classification of
solutions, dividing the A, B plane into nine distinct regions. The region labelled
2 in Figure 1 is split into two regions, 2 and 8, in Figure 14; and the region
labelled 3 in Figure 1 is likewise split into regions 3 and 9 in Figure 14. The
numbers of class III solutions in each region has already been given in Table 1.

o
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Figure 14. Division of (A, B) Plane Into Separate Regions Characterized by
Numbers and Classes of Solutions in Each Region. Detail for B = 1 shows
modification of Figure 1 to include class III solutions

4.1  Special Values of y)

For several particular values of B, the solutions of Eq. (33) are of simple
form.
For B=0, the four roots are

1
¥y, =t =, | (the last a double root) .
b Ty2A

t'or B=1, the four roots are

"=

&)

i[1\+212V2A+1]”2 1
IK *

The two roots 0 = ¥y = 1 are those for which the + sign inside the radical is taken

a8 =,

33




2,

For A = (83 1)2 one root is

The residual cubic is
3 2 .
2VA Y+ (2-4yA y + (VE -2y, +1=0

and the remaining roots do not seem to have simple forms.

. 3
| _ _(B+1) .
For A = AMIN == the four roots are

Y1 T 1TE (double root)
‘] 2
_ B2 VYB"+B+1
17 B+1 :

Figure 15 shows typical values of y asa function of A with B as parameter,.
Solid lines are solutions of the original boundary value problem with j < 1. Dashed
values continue solutions for all values 0 < yp = L Dotted lines (l/@ for Bz 1
and 1/V¥A and (2A)-l/3

solutions existing in each region.

for B = 1) separate regions according tonumber of class 111
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Figure 15. Values of 0=y, = 1 From Eq. (33) as Functions of A With B as
Parameter. Solid lines; values of y; for which j = 1; dashed lines; values of
yj for which j 2 1; dotted lines; separate regions according to number of
cl‘ass III solutions existing in each region
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FORMS OF THE POTENTIAL

The primary purposes of this report are to investigate structure, to classify

solutions, and to organize methods of obtaining the latter.

We do not, therefore,

present here large numbers of graphs of potential vs distance; these are given in

works previously referred to.

We do, however, for illustrative purposes, give

several examples of such graphs and to this end we choose parameters lying in

regions 4, 5, 8 and 9, in all of which there are three solutions corrcsponding to

each pair of parameters (A, B).

Figures 16, 17, 18, and 19 each show the three

potential curves corresponding to the values of parameters shown in Table 3.

Table 3.
Give Class

Parameters For Graphs of Potential.

Numerals in Parenthesis

Figure Number 16 17 18 19
Region 4 5 8 9

B 1.0 2.0 0.1 0.6

o 0.0 3.0 -0.99 -0.64
A 6.0 15 1.0 2.1

Cl --- .- --- ---
C2 -0. 926 1(II) -0, 1651(1D) --- ===
(.‘3 -4.086 (II) -13.31 (D) -0, 02545(I) -1. 118(1D
Yy 0. 3187 0. 2525 0.7092 0.5794
Yo o mmmm=s 0 mmeees 0.9672 0.6679
J 0. 3591 0. 9546 0.0118 0.5813
e T T 0.9311 0.9324
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Figure 16. Potential Curves Corresponding to Region 4. B=1.0; 0,= 0.0, A=6.0
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Figure 17,

Potential Curves Corresponding to Region 5. B=2,0; 0,= 3.0; A=15.0
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Figure 18, Potential Curves Corresponding to Region 8. B=0.1; 0,= -0.99; A=1.0
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Figure 19, Potential Curves Corresponding to Region 9. B=0,6; ®,= -0.64; A=2,1

317




Appendix A

Listing ot Special Vatue of A

- (B2-D -0 B !

Ag

A= B2 0P

Aty = B 9% (B-1)

A;“ = (2B+ n2a-B

ap = (B n’

Aym * LBy n?

A, - (1- BIZ (B+1/2)

B, = (-8 B2+ 1)

By Az' AR are roots of the discriminant of Eq. (7))
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